PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease


Highlights

  • Structures of A. acidoterrestris C2c1 in pre-target- and target-bound states

  • Block to crRNA guide alignment released on addition of target DNA

  • A single RuvC active site model reflecting sequential dsDNA cleavage

  • C2c1 exhibits cleavage properties similar to Cpf1 and distinct from Cas9


Summary

C2c1 is a newly identified guide RNA-mediated type V-B CRISPR-Cas endonuclease that site-specifically targets and cleaves both strands of target DNA. We have determined crystal structures of Alicyclobacillus acidoterrestris C2c1 (AacC2c1) bound to sgRNA as a binary complex and to target DNAs as ternary complexes, thereby capturing catalytically competent conformations of AacC2c1 with both target and non-target DNA strands independently positioned within a single RuvC catalytic pocket. Moreover, C2c1-mediated cleavage results in a staggered seven-nucleotide break of target DNA. crRNA adopts a pre-ordered five-nucleotide A-form seed sequence in the binary complex, with release of an inserted tryptophan, facilitating zippering up of 20-bp guide RNA:target DNA heteroduplex on ternary complex formation. Notably, the PAM-interacting cleft adopts a “locked” conformation on ternary complex formation. Structural comparison of C2c1 ternary complexes with their Cas9 and Cpf1 counterparts highlights the diverse mechanisms adopted by these distinct CRISPR-Cas systems, thereby broadening and enhancing their applicability as genome editing tools.


Copyright © 2018 LIFESIS All Rights Reserved.

苏ICP备09044010号

Copyright © 2018 拜诺生物 All Rights Reserved.

苏ICP备09044010号